KENDRIYA VIDYALAYA LEH

Questionbank Biology

Unit -IX

Chapter-11. Biotechnology Principles and processes

IMPORTANT POINTS

Biotechnology may be defined as the use of microorganisms animals of plants cells of their components to generate products and services useful to human beings.

Genetic engineering and maintenance of sterile condition in chemical engineering process have given the birth to modern biotechonology.

The basic principles of Recombinant DNA Technology involve the stages like generation of DNA fragments and selection of the desired pieces of DNA, insertion of the selected DNA into a cloning vector i.e. plasmid, to create a recombinant DNA, Introduction of the recombinant vectors into host cells (e.g. Bacteria), multiplication and reflaction of clones containing the recombinant molecules and expression of gene to produce the desired product. The tools required in the recombinant DNA technology include restriction enzymes, cloning vectors and competent host.

The term DNA recombinant technology refer to the transfer of segment of DNA from one organism to another organism (host cell) where it reproduce. The proces involve a sequence of steps like isolation of genetic material, Cutting of DNA at specific site, amplification of gene of interest using PCR, insertion of recombinant DNA into the host cell organism obtaining the foreign gene product and downstream processing.

(1)T	he enzymes that cuts specifically	recognition sites in the DNA is known as
	(a) DNA ligase	(b) DNA Polymerase
	(c) Reverse transcriptase	(d) Restriction endonuclease
(2)	DNA can be introduced into an	ny cell by
	(a) Injection	(b) being complexed with Ca salts
	(c) gel electrophoresis	(d) being placed along with
(3)	Ability of a plant or animal cell organism is:-	to repeatedly divide and differentiate into a complete
	(a) cloning	(b) DNA finger printing
	(c) cellular totipotency	(d) mitosis
(4)	Restriction endonuclease is also	o known as -
	(a) molecular glue	(b) DNA ligase
	(c) DNA Polymerase	(d) molecular scissors

(c) Mitochondrion

Extra chromosomal small cirular double stranded DNA molecule in a bacterial cell is

stranded DNA molecule in bacterial cell is

(b) Plasmid

(5)

(a) Plastid

(d) Chloroplast

(6)	Introduction of foreign genes into plant or animal cells using micropipettes is
	(a) Electroporation (b) Chemical - mediated genetransfer
	(c) microinjection (d) Particle gun
(7)	Which one of the following is releated with genetic engineering?
	(a) Mulations (b) Ribosomes (c) Mitochondria (d) Plasmids
(8)	In bacteria, genes for antibiotic resistance are usually located in
	(a) Plasmids (b) Cytoplasm (c) Mitochondria (d) Nucleus
(9)	A technique used to make numerous copies of a specific segment of DNA quickly and
	accurately
	(a) Translation (b) transcription
	(c) Ligase chain reaction (d) polymerase chain reaction
(10)	The enzyme that cleaves DNA at specific sites, producing sticky ends is called
	(a) Restriction endonuclease (b) Cleaving enzyme
	(c) Lysing enzyme (d) Exonuclease
(11)	Which of the Following is a genetic vector?
	(a) Plasmid (b) Phage (c) Cosmid (d) All of these
(12)	Restriction endonucleases are used in genetic engineering because -
	(a) They can degrade harmful proteins
	(b) They can join DNA fragments
	(c) They can cut DNA at specific base sequences
	(d) They can cut DNA at variable sites
(13)	Ideal host for the amplification of DNA molecules is
	(a) Viruses (b) Plants (c) Bacteria (d) Animals
(14)	Ti Plasmid naturally occurs in
	(a) Agro bacterium (b) Corynebacterium (c) Staphylococcus (d) Vibrio
(15)	The sticky ends of Fragmented DNA molecules are made up of
	(a) calcuim salts (b) endo nuclease (c) un paired bases (d) methyl groups
(16)	Which of the following are the essential requirements for recombination?
	(a) Single stranded DNA (b) DNA ligase
	(c) DNA Polymerase I (d) All of the above
(17)	The Plasmid derived from E.Coli is
	(a) PBR327 (b)PBR322 (c) both a above (d) None
(18)	Ti Plasmid is useful in
	(a) bringing new genes into animal cells (b) bringing new genes into plant cells
	(c) to nearly any sites on a chromosome (d) bringing tumour cells into plant cells
(19)	Many copies of a DNA molecule in a test tube are procurred by
	(a) Polymerase chain reaction (PCR) (b) Molecular chain reaction (MCR)
	(c) Ephemeral chain reaction (ECR) (d) All of these

(20)	Bam H I, ECo I	R I, Sal I are the typ	es of		
	(a) restriction er	donucleasses	(b) restraction	endoxidases	
	(c) restriction ex	onucleases	(d) restriction p	oolymerases	
(21)	Retro viruses ha	ve genetic matetial	which is		
	(a) DNA	(b) RNA	(c) both DAN	& RNA	(d) proteins
(22)	Genetic enginee	ring is possile becar	ise		
	(a) the phenome	non of transducation	on in bacteria is we	ell understoo	od
	(b) we can see I	ONA by electron m	icroscope		
	(c) we can cut I	NA at specific site	s by endonucleas	es like DNA	ase I
	(d) restrication of	endonuclease purifi	ed from bacteria o	an be used i	n vitro
(23)	Plasmids are the	suitable vectors fo	r genetic cloning a	as	
	(a) they are indi-	spendable			
	(b) they are self	replicating units			
	(c) they are esse	ntial for bacterial re	producation		
	(d) None of the	above			
(24)	Which of the fol	lowing is used in ge	netic engineering	?	
	(a) Restrication	endonuclease	(b) Myce	obacterium	
	(c) Entameha		(d) Peps	in	
(25)	The first hormon	ne artificially produ	ced by culturing b	acteria is	
	(a) Insulin	(b) thyroxine	(c) Testo	sterone (d	l) Adrenaline
(26)	When the numb	er of genes increase	es in response to s	ome signal t	he effect is called
	(a) gene dosage		(b)Gene	pool	
	(c) gene amplific	cation	(d) gene	freaquency	
(27)	Which one of th	e following pairs is	correctly matched	1?	
	(a) RNA polym	erase - RNA prime	er		
	(b) Restrication	enzymes - Genetic	engineering		
	(c) Centeral dog	gma - codon			
	(d) okazaki frag	ments - splicing			
(28)	Plasmids are aut	onomously replicat	ing mini chromoso	omes found i	in
	(a) Bachterio ph	age lambda	(b) Leish	mania dono	vani
	(c) Escherichia o	coli	(d) para	moecium ca	udatum
(29)	Improvement of	f genotype of an org	ganism by addition	of some for	reigm gene is
	(a) genetic diver	sity	(b) gene	handing	
	(c) tissue cutlure	:	(d) genet	tic engineerir	ng
(30)	Two bacteria for	und to be very usefu	ıl in genetic engin	eering exper	iments are
		as and Klebsiella			grobacterium
	(c) Nitrobacter	and Azotobacter	(d) Rhize	obium and D	iplococcus

Questionbank Biology (31) Restriction enzymes are isolated chiefly from...... (a) Algae (b) Fungi (c) Protozoans (d) Prokaryotes (32) There are special proteins that help to open up DNA double helix in front of the reaplication work . these proteins are...... (a) DNA gyrase (b) DNA polymerase I (b) DNA ligase (d) DNA topoisomerase (33) Technology which uses living components for the welfare of human being is..... (C) Bioinformatics (D) Biotechnology (b) Botany (34) Which prosess is involved in making bread cheese, beer and wine? (a) Respiration/hydrolysis (B) Degradation (C) Fermentation (D) Decomposition (35) EFB stands for (a) European Foudation of Biotechnology (B) European Foundation of Biology (c) European Foundation of Biotechnology (d) European Foundation of Biology (36) The organism whoes gene have been artificially altered for desired efect is called as...... (a) genetically mutant organism (b) gene transfer (c) genetically modified organism (d) Genetically transferred organism (37) The sequence of DNA that reads the same backward and forward across the double strand is..... (a) Recipient sequence (B) palindromic sequence (c) Replicate sequence (d) origin sequence (38) How many restriction enzymes are known to be isolated? (a) more than 800 (b) more than 700 (d) more than 900 (c) more than 600 (39) Which of the following step is necessary part of DNA recombination technology? (a) Insertion of DNA fragment into vector (b) Insertion of vector into Bacteria (c) multiplication of the clones containing the recombination molecule (d) All the above (40) Restriction enzymes belong to which class of enzymes? (a) Nucleolase (b) Exo nucleases

(b) selectable marker

(d) origin of restriction

(d) Endonucleases

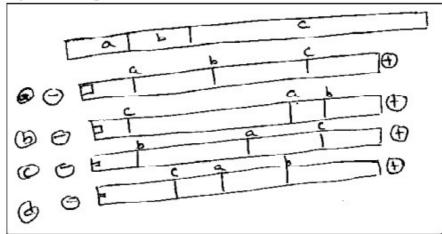
(41) A sequence of in a genome at which replication is intiated in

(c) Nucleases

(c) cloning site

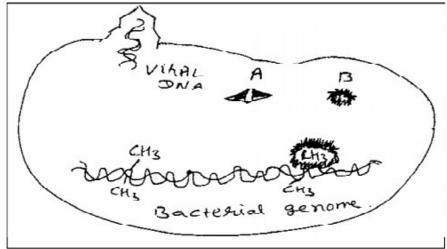
(a) origin of relpication

		Questionb	ank Biology			
(42)	Genes which helps in the gro	owth of transform	nants are			
12)	(a) orgin of replication		ning site			
	(c) origin of restriction		ectable marker			
(43)	, , ,					
(43)	(a) All the plants		ots only			
	(c) Monocots only		llophytes only			
(44)				sed to pu	lse of high	
(++)	voltage current ?	ng teeriniques nos	st cens are expo.	sed to pu	iise of high	
	(a) Electroporation	(b) Particle Bon	hard me	ents	
	(c) Micro injection		fection	iouru nic	11.5	
(45)						
(10)		Electroporation		ic	(d) Micro injection	n
(46)		-				
(10)		Chitinase	(c) Cellulo		(d) All the above	
(47)						
(- ,)	•		c) Celluose		l the above	
(48)						
	(a) denaturing of DNA	7	b) Annealing of	-		
	(c) Isolation of Donor DNA		d) Down stream			
(49)		100 HOR ST. AUCT. 17		_		
	(a) Reverse primers		b) Forward prii			
	(c) Oligo nucleotide primer		d) Internal prim			
(50)		d for annealing o	f DNA molecul	e ?		
	(a) 50-65° C (b)	30-35° C				
	(c) 40-45° C (d)	20-25° C				
(51)	Which of the following is rel	ated with genetic	engineering?			
	(a) Breeding	(b) son	natic hybridization	on		
	(c) mutation	(d) Tra	nsgenic			
(52)	What is C - DNA?					
	(a) circular DNA					
	(b) Cloned DNA					
	(c) DNA produced from rev	verse transcriptio	n of RNA			
	(d) Cytoplasmic DNA					

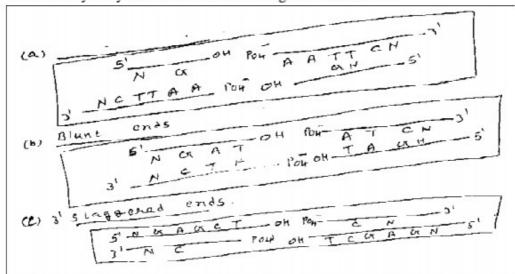

- (53) Which of the bollowing statement is incorrect?
 - (a) cosmid contains gene coding for viral protein
 - (b) cosmid relpicates like plasmids
 - (c) cosmid has antibioticresistant marker gene
 - (d) cos sit has 12 bases helping to join complete genome to make it circular

- (54) The genetic recombinants obtained by in sertion of plasmid into 1 phage genome is called
 - (a) cosmid
- (b) plasmid
- (c) phagmid
- (d) foreign DNA
- (55) TATAATG sequnce near the RNA start point of phokaryotic promoter is......
 - (a) NICKS
- (b) DNA marker
- (c) pallindrome
- (d) pribnow box
- (56) Exonucleases cleaving nucleotides one at a time from the end of polynucleotide chain are.
 - (a) Specific for 5' end of RNA strand
- (b) specific for 3' end of RNA strand
- (c) specific for both 5' and 3' ends of nucleotide strand
- (d) Non-specific for 5' and 3' ends of nucleotide
- (57) Genes that are involved in turning on or off the transcription of a set of structural genes are called
 - (a) Polymorphic genes

(b) operator gene

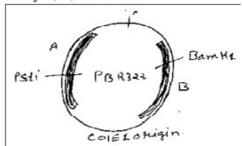

(c) Rebundant gene

- (d) Regulatory gene
- (58) This segment of DNA restuction sites I and II which create restriction fragments a,b and c which of the following gel (s) Produces by electrophoresis would represent the separation and identity of these fragments?



- (59) Enzymes used in PCR is
 - (a) taq polymerase
 - (b) gyrase
 - (c) transcriptase
 - (d) hexokinase
- (60) What are structure labelled A & B respectively
 - EcoRv restriction endonuclease and E coRv ligase
 - (b) EcoRv ligase and EcoRv nuclease and EcoRvmethlase
 - (c) Eco—Rv restriction endo EcoRv methylase
 - (d) EcoRv Polymerase and EcoRv methylase

(61) Can you pick up from the figure how bacteria protects its own genone from degradation by restreiction endonuclease?



- (a) site specific coupling
- (b) site specific oxidizing
- (c) site specific oxidizing
- (d) site specific methylases
- (62) EcorI, EcoRv and Sac I are types of restriction enzymes Three types of termini can be generated (1) 5¹ staggered and (2) Blund ends (e) 3¹ staggered ends 5¹ termini of each strand in the cleavage product retain phosphory, group from the phosphodiester bond 3¹ termini are hydroxylated which of the following is correct answer?

- (a) All of these produce sticky ends
- (b) All of them produce blunt ends
- (c) Each one of them can produce sticky and blunt ends
- (d) All of them act on pallindromic sequences

- (63) This is figure of plasmid pBR322 Identiby what represented by A, B, and C
 - (a) ATcR, B ApR and C EcorI
 - (b) ATcR, B EcoRI and C ApR
 - (c) A EcorI, B ApR and C TcR
 - (d) AApR, BTcR and CEcoRz

Matching type questions

- (64) These are important set of enzymes used in biotechnology Match them with exact role
 - P Taq DNa Polymerase
- (i) cutting single stranded part of DNA
- Q S I nuclease
- (ii) Ligase
- R Restriction endo nuclease
- (iii) Thermostable enzyme
- S mole cular glue
- (iv) cutting pallindromic sequences(v) union of pallindromic sequences
- P R Q (a) (iii) (iv) (i) (ii) (iii) (ii) (b) (v) (iv) (iv) (i) (v) (ii)
- (c) (iv) (i) (v) (d) (iii) (iv) (i)
 - (ii)
- (65) Match the column I and column II

(d)

b

- P Radio active andibody (a) substance that can be constructed in the labora tory
- Q Artificial gene (b) substance that can be used to identify colonies of genetically engineered bacteria that makes particular gene product
- R Amplification (c) Abnormal enhanced replication of a plasmid many copies of plasmid in each cell
- S To produce clones (d) A la

C

(d) A large population of idential cells

a

- T short gun cloning (e) The use of entire array of genes of an organism in order to obtain particular gene product
- P Q R S T d (a) С e (b) b d C e b (c) C d e

e

493

d

Assertoin- Reason type Questions

	The Co			
	A is assertion R is reasoning			
	(a) A is correct, R is explanat	ion of A		
	(b) A is correct, R is correct b	but it is not exlpana	ation of A	
	(c) A is correct, R is false.			
	(d) A is wrong, R is wrong			
	(e) A is wrong, R correct			
(66)	A - Hybridoma cells are shifte	d to a medium defi	cient in nutrient which can not	be syntth
	sized by myeloma cells			
	R - This medium allows select	tion of hybridoma c	ells	
	(a) (b) (c)	(d)	(e)	
(67)	A - The term hybridoma is ap	plied to fused cells		
	R - They are formed by the fu	sion of lymphocyte	cell and myeloma cell	
	(a) (b) (c)	(d)	(e)	
(68)	A - Extraction and purficiation	n of enzymes is labo	orious and expensive	
	R - protein engineering can be	e used to produce e	enzymes at large scale	
	(a) (b) (c)	(d)	(e)	
(69)	A - Restriction enzymes of dif	ferent organisms th	at recognize the identical seque	ences
	a the called isoschizomers			
	R - They are present only in e	ukarytoes		
	(a) (b) (c)	(d)	(e)	
(70)	A- Plasmids are tools of genet	tic engineering		
	R- Virulence plasmids provide	e pathogenecity to l	bacteria	
	(a) (b) (c)	(d)	(e)	
(71)	For transformation, micro parti	icles coated with D	NA are bombarded with gene	gun made up of.
	(a) Platinum or Zinc	(b) Silicon or Plat	inum	
	(c) Gold or tungsten	(d) Silver or Plati	num	
(72)	PCR and Restriction fragment	t lenth Polymorphis	sm are the methods for.	(AIPMT-2012)
	(a) genetic transformation	(b) DNA Sequen	cing	
	(c) DNA finger printing	(d) Study of enzy	mes	
(73)	The linking of antibiotic resist	ance gene with the	plasmid Vector became possib	le with
				(CBSE-2008)
	(a) DNA ligase (b) Exonuc	clease (c) Endo n	uclease (e) DNA Polymerase	
(74)	Gel electrophoresis is used fo	r		(CBSE-2008)
	(a) Isolation of DNA molecule	e		
	(b) Cutting of DNA in to fragr			
	(c) Separation of DNA fragmo	_		
	(d) Construction of recombina	ant DNA by joining	with cloning Vector	

Questionbank	Rin	nav
Cucationing it	DIU	luyy

(75)	Which one of the follwing Palindromic base sequence in DNA can	be easily cut at about
	the middle by some Particular restriction enzyme?	(CBSE-2010)

- (a) 51 _____ GATATG _____ 31
 - 31_____51
- (b) 51 _____ GAATTC _____ 31
 - 31 _____51
- (c) 51 _____ CACGTA ____ 31
 - 31 _____ CTCAGA _____ 51
- (d) 5¹_____ CGTTCG _____ 3¹
 - 31_____51
- (76) Gentic engineering has been sucessfully used for producing ____ (CBSE-2010)
 - (a) trangenic models for studying new treatments for Certain cardiac diseases.
 - (b) transgenic Cow Rosie which produces high fat milk for making ghee.
 - (c) animals linke bulies for farm work as they have super power.
 - (d) transgenic mice for testing safety of polio Vaccine before use in humans.
- (77) Match the following and choose the correct combination from the option given ...

(Karnatak PMT-2005)

Column I

- (a) Escherichia coli
- 1 nif gene
- (b) Rhizobium meliloti
- 2 digestion of hydrocarbons of crude oil

Column II

- (c) Bacilius thuringiensis
- 3 human insulin production4 Biocontrol of fungal disease
- (d) Pseudomonas putida
- 5 biodegradable insecticide
- (a) A = 3, B = 1, C = 5, D = 4
- (b) A = 1, B = 2, C = 3, D = 4,
- (c) A = 2, B = 1, C = 3, D = 4
- (d) A = 4, B = 3, C = 1, D = 2
- (e) A = 3, B = 1, C = 5, D = 2
- (78) Find the incorrrect statement
 - (a) Gene therapy is a genetic engineering technique used to treat disease at molecular level by replacing defective genes with normal genes.
 - (b) Calcitonin is a medically useful recombinant product in the treatment of intetility
 - Bt toxin is a Biodegradable insecticide obtained from bacillis thuringiensis
 - (d) Trichoderma sp. is a biocontrol agent for fungal diseases of plants
 - (e) Totipotency is the potential ability of a cell to develop into a complete plant

(Karnatak PMT-2005)

- (79) Production of a human protein in bacteria genetic engineering is possible because
 - bacterial cell can carry out the RNA splicing reactions
 - (b) the human chromosome can replicate in bacterial cell
 - (c) the mechanism of gene regulation is identical in human and bacteria
 - (d) The genetic code is universal

(CBSE-2005)

			-	Duestin	nhank	Biology	v				_
				2463110	IIIDUIIK	Diviog	J				
(80-)	The	basis of DNA finge	er printing is								
	(a)	The double helix		(b)	Erro	rs in ba	ase seq	uence			
	(c)	Poly morphism is	n sequence		(d)	DNA	replica	ation			
	(e)	DNA Coiling								(Kerala - 200	8)
(81)	A ge	netically engineere	d microorga	nism us	ed suc	cessful	lly in bi	omediation	of oil s	pillg	
	is sp	ecies of								(CBSE-2007))
		(a) Trichoderr	na	(b) X	Camtho	omonas	s (c) Ba	acillus (d)	Pseu	domonas	
(82)	Wha	t is the function of	Restriction e	ndonu	clease	?			((AIPMT -2006	i)
	(a)	Restricts the synt	thesis of DN	A inside	e the n	ucleus					
	(b)	Synthesizes DNA	A								
	(c)	Cuts DNA molec	cule randoml	y							
	(d)	cuts DNA molec	cule at specifi	c sites							
(83)	The	nuclease enzyme v	vhich begins	its atta	ck froi	m Free	end of	a polynucl	eotide i	S	
									(Pb-	PMT-2001)	
	(a) E	xonuclease	(b) Kinase		(c) P	olymei	rase (d)	Endonucl	ease		
(84)	Iden	tify the Plasmid								(ET 2004)	
	(a) A	du I	(b) Hind I	Ι	(c) E	CORI	(d) P	BR322			
(85)	Mole	ecular scissors, wh	ich cut DNA	at spec	cific si	te			(Ker	ala-2004)	
	(a) li	gase	(b) cellulas	se	(c) p	ectinas	se	(d) Polym	erase		
	(e) re	estriction endonucl	lease								
(86)	In tra	ansgenics the expe	ression of tra	insce in	the ta	rget tis	ssue is l	known by		(CBSE-2004))
	(a) E	nhancer	(b) T	Transge	ene		(c) Pr	omoter	(d) R	Reporter	
(87)	Varia	able number of ten	der repeats (VTNR) in the	DNA	molecu	ıle are high	ly usefu	ıl	
	in										
	(a)	monoclonal antib	ody product	ion	(b) I	NA fir	nger pri	inting			
	(c)	Recombinant DN	NA technolog	y (d) st	tem ce	ll cultu	re		(K.C	C.E.T - 2006)	
(88)	Whi	ch one of the follow	ving bacteria	has for	ınd ex	tensive	use in	genetic eng	gineerin	g	
	worl	c in plants ?									
	(a)	Agrobacterium ta	amefaciens		(b) C	Clostrid	lium sej	pticum			
	(c)	Xanthomonas cit	ri		(d) E	Bacilius	Coagu	ılens			
										(CBSE - 200	3)
(89)	Wha	t does Bt stand Fo	or the Popula	r crop	Bt Co	tton?					

(c) 3.5 million

(c) Insulin

(90) The total number of nitrogenous bases in human genome is estimated to be about

(91) Name of the drug used in cancer treatment produced by using biotechnology is

(b) Best type

(b) 3.1 million

(b) TSH

(a) Best

(a) HGH

(a) 35 million

(c) Biotechnology (d) Bacilius tomentosta

(d) 3.5 thousand

(d) Interfern

(AIIMS 2004)

		Question	bank Biology	
			-	(Kerala PMT 2004)
(92)	Which of the following p	pair is correctly mate	ched?	
	(a) - central dogma - co	don		
	(b) - Okazaki fragments	- splicing		
	(c) RNA Polymerase - F	RNA Primer		
	(d) Restriction enzymes	genetic engineering	g	(JIPMER - 2004)
(93)	First Biochemical to be l	Producod commer c	cially by microbial cloning and	genetic
	engineering is			(BHU-2005)
	(a) interferom	(b) penicillin		
	(c) human insulin			
(94)	First hormone prepared	by genetic engineer	ing is	(Manipal-2005)
	(a) Insulin	(b) Oxytocin		
	(c) adrenaline	(d) Somatotropin		
(95)	A technology which has	found immense use	in solving cases of disputed pa	arentage is
				(Karnataka ET-2005)
	(a) DNA finger printing		(b) Polymerase chain reaction	í
	(c) Recombinant DNA to	echnology	(d) Monoclonal antibody prod	luction
(96)	Matching sequence of D	NA between two ev	vidences, one of the criminal w	vith the
	suspect is known as			(AMU-2005)
	(a) DNA finger printing	(b) DNA am	plification	
	(c) Gene maping	(d) DNA res	solution	
(97)	Given below is a sample	of a portion of DN	A strand giving the base seque	ence on the
	opposite strands, what i	s so special shown i	n it ?	
	51 C	GAATTC	_ 31	
	31 C	TTAAG	_ 51	
	(a) Replication Comp	leted		
	(b) Deletion mutation			
	(c) start codon at 51 c	end		
	(d) Palindromic seque	ence of base pairs		
(98)	Agarose extracted Fron	n weeds finds use in	200 PRO 2009	(A.I.PMT 2011)
	(a) spectrophoto metry		(b) Tissue culture	
	(c) Gel electrophoresis		(d) PCR	
(99)	Widely used tool in gene	tic engineering of c	rop plants is	(AIEEE 2004)
	(a) protoplast fusion		(b) Transposon	
	(c) Micro injection		(d) Agrobacterium mediation	
(100)	c DNA Probes are copie	ed from messenger I	RNA molecule with the help of	f
	(a) Restriction enzyme	(b) Re	everse transcriptase	
	(c) DNA Polymerase	(d) Ad	denosine deaminase	
			407	(AIIMS 2005)

0 1 1 1	D' 1
Questionbanl	n Biviour
CHEVIDORDAN	k Dididdy

(101)	Which one of the following pair is wro	ongly matched?	
	(a) methanogens - Gobargas	(b) Yeast - Ethanol	
	(c) Streptomycetes - Antibiotic	(d) Coliborms - vinegar	
	15.17.000.000 (10.100.000	100 to	(CBSEPMT-2007)
(102)	The Prerequisites for biotechnologica	l production of antibiotic is	
	(a) to search an antibiotic producing n	nicroorganism	
	(b) to isolate the antibiotic gene		
	(c) to join antibiotic gene with E coli p	olasmid	
	(d) All of the above		(MP PMT 2008)
(103)	Which one of the following is now be	ing commercially produced by biotec	hnological
	Procedures		15 SEC. 150
	(a) Nicotine (b) Morphine	(c) quinine (d) Insulin	
(104)	Which one of the following is a wrong	g matching of a microbe and its indust	rial
	product while the remaining three are	correct	
	(a) clostridium butylicum - lactic acid		
	(b) Aspergillis niger cirric acid		
	(c) yeast - statins		
	(d) Acetobacter aceti - acetic acid		(CBSE PMT 2011)
(105)	Some of the steps involved in the pro-	duction of humulin are given below cl	hoose the
	correct sequence		
	(i) synthesis of gene (DNA) for human	n insulin antibicially	
	(ii) culturing recombinant E.Coli in bio	oreactors	
	(iii) Purification of humulin		
	(iv) Insertion of human insulin gene in	to plasmid	
	(v) Introduction of recombinant Plasn	nid into E.Coli	
	(vi) Extraction of recombinant gene p	roduct From E.Coli	
	(a) (ii), (i), (iv), (iii) (v), (vi)	(b) (i), (iii), (v), (vi), (ii), (iv)	
	(c) (i), (iv), (v), (ii), (vi), (iii)	(d) (iii), (v), (ii), (i), (vi), (iv)	
			(KCET -2010)

ANSWER KEY

1	d	36	c	71	c
2	a	37	b	72	d
3	c	38	b	73	c
4	d	39	c	74	c
5	b	40	b	75	b
6	b	41	b	76	d
7	d	42	a	77	c
8	b	43	b	78	a
9	b	44	a	79	c
10	d	45	b	80	d
11	a	46	a	81	c
12	d	47	b	82	d
13	c	48	a	83	a
14	a	49	a	84	c
15	d	50	a	85	e
16	b	51	d	86	a
17	b	52	c	87	b
18	c	53	a	88	a
19	a	54	a	89	e
20	c	55	d	90	d
21	b	56	b	91	c
22	a	57	c	92	c
23	b	58	b	93	a
24	a	59	С	94	a
25	a	60	a	95	a
26	c	61	d	96	d
27	b	62	b	97	c
28	c	63	d	98	b
29	a	64	c	99	b
30	b	65	a	100	d
31	b	66	a	101	d
32	a	67	c	102	d
33	d	68	d	103	d
34	c	69	a	104	a
35	c	70	b	105	b
55		7.0	J	105	

•••